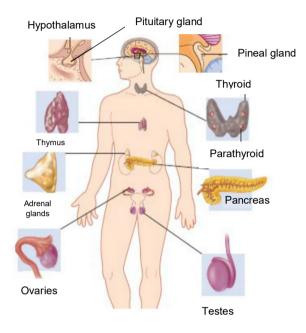
HUMAN BIOLOGY UNIT 3

Endocrine System


the hypothalamus, pituitary, thyroid, parathyroid, pancreas, thymus, gonads, pineal and adrenal glands, are endocrine glands found in the human body

Glands

• Endocrine and exocrine glands

Exocrine glands: secrete into a duct that carries the secretion to the body surface or to a body cavity e.g. sweat glands, salivary glands

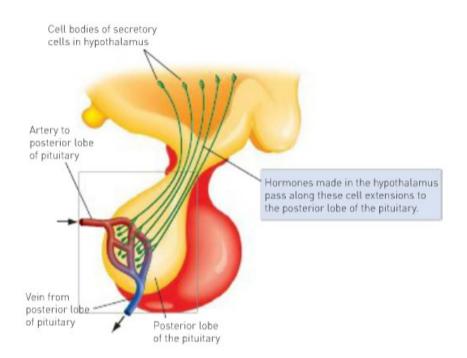
Endocrine (ductless) gland: secrete hormones into the surrounding extracellular fluid, which passes into the capillaries to be transported by the blood e.g. thyroid gland, pituitary gland

hormones secreted from the hypothalamus, pituitary, thyroid, parathyroid, pancreas and adrenal glands are involved in homeostasis by affecting specific target organs

Endocrine glands

- Hypothalamus
 - Located at the base of the brain
 - Functions are carried out through the pituitary gland
 - Pituitary lies just under the hypothalamus and is joined to it by the infundibulum
- Pituitary consists of anterior (front) and posterior (back) lobes function separately

Anterior Pituitary Gland


• Has no nerves connecting it to the hypothalamus but is connected to it by a complex network of blood vessels.

Posterior Pituitary Gland

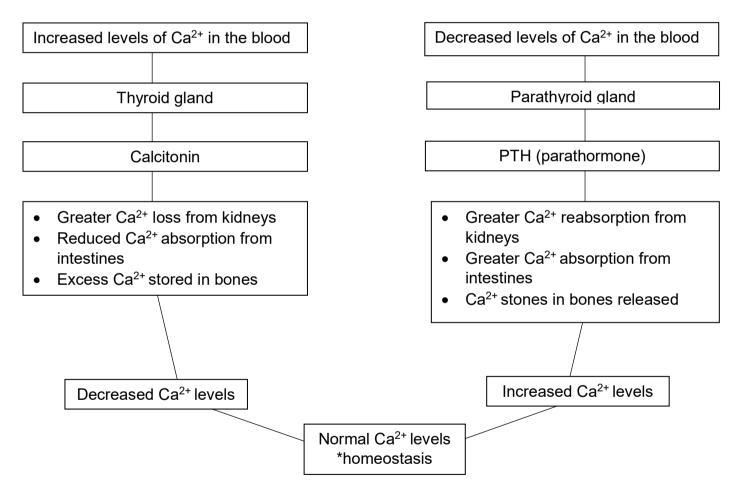
- Is connected to the hypothalamus by nerve fibres with nerve cells bodies in the hypothalamus
- The fibres pass through the infundibulum.
- Not a 'true' gland as it does not secrete anything.
- Release is stimulated by nerve contraction

Hormone	Target Organ	Main Effects
	Target Organ	
Anterior Pituitary Gland	Overies (females)	Growth of ovarian follicles
Follicle-stimulating hormone (FSH)	Ovaries (females)	Growin or ovarian folicies
	Testes (males)	Production of sperm
Luteinising hormone (LH)	Ovaries (females)	Ovulation and formation of the corpus luteum
	Testes (males)	Stimulates interstitial cells of testes to secrete testosterone
Growth Hormone (GH)	All body cells	Growth and increase rate of protein synthesis
Thyroid-stimulating hormone (TSH)	Thyroid gland	Acts on the thyroid to stimulate release of hormones from thyroid
Adrenocorticotrophic hormone (ACTH)	Adrenal cortex	Acts on the adrenal cortex to stimulate the realise of hormones from the adrenal cortex
Prolactin	Mammary glands	Milk production
Posterior Pituitary Gland		· ·
Oxytocin	Uterus	Contraction of uterus during childbirth
	Mammary glands	Release of milk
Antidiuretic hormone (ADH)	Kidney tubules	Increase the permeability of the distal convoluted tubule to reabsorb water

The secretions of the pituitary gland are controlled by the hypothalamus through transport of hormones, either via nerve cells or the vascular link between them.

Pineal Gland

- Found inside the brain
- Secretes melatonin
 - Regulates sleep patterns


Thyroid

- Just below larynx, two lobes surrounding trachea
- Releases thyroxine
 - Controls body metabolism by regulating both catabolic and anabolic reactions
 - Brings about release of energy and maintains body temperature

Parathyroid Glands

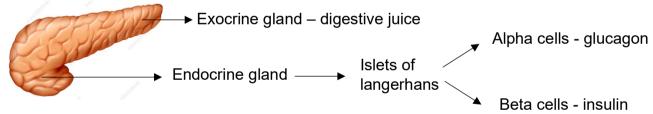
- Four pea-sized glands embedded at the back of the two lobes of the thyroid gland
- Parathormone (PTH) controls level of calcium in the blood

Thymus

- Above the heart behind the sternum
- Decrease in size after puberty
- Thymosins influence the maturation of T-lymphocytes (disease response)

Adrenal Glands Adrenal gland

- Two glands, one just above each kidney
- Each gland has an adrenal medulla (inner portion) and an adrenal cortex (outer portion)


Adrenal Medulla

- Adrenaline (epinephrine) is similar to the effect of the sympathetic division of the autonomic nervous system (fight or flight response)
- Noradrenaline (norepinephrine) is similar to adrenaline but is particular to the heart rate and force of the heartbeat

Adrenal Cortex

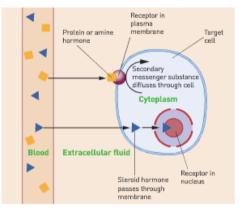
- Produces >20 hormones called corticosteroids
- Aldosterone acts on the kidney to reduce the amount of sodium and increase amount of potassium in the urine
- Cortisol promotes normal metabolism, helps the body withstand stress and helps repair of damaged tissue

Pancreas

- Endocrine and exocrine gland
- Clusters of cells called islets of Langerhans
- Islets contain two types of cells
 - o Alpha cells
 - Glucagon: increases blood glucose levels

Promoting the breakdown of glycogen to glucose in the liver (glycogenolysis) Breaking down fat in the liver and adipose tissue to convert it to glucose (gluconeogenesis)

Beta Cells
 Insulin: decreases blood glucose levels
 Promoting uptake of glucose from the blood by body cells
 Liver converting glucose to glycogen (glycogenesis)
 Formation of glycogen from glucose in skeletal muscle.


Hormone Summary

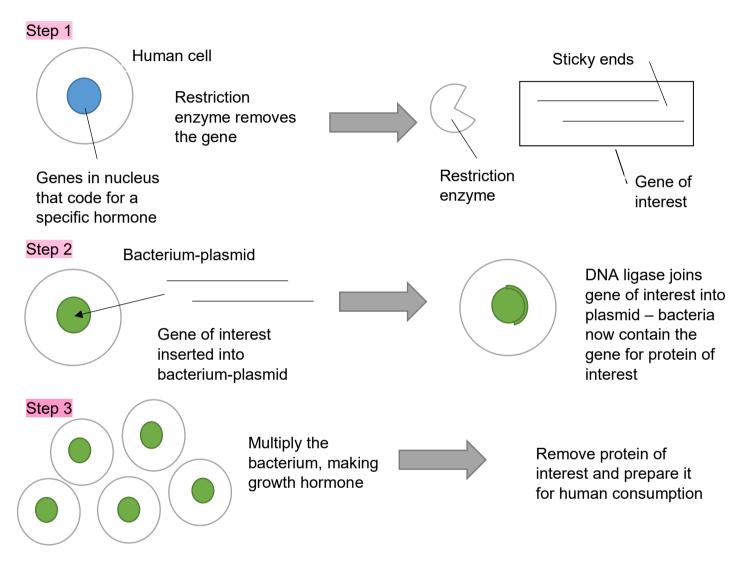
nonnone 3				
Gland	Hormone	Production site	Target Cells	Effect
Anterior Pituitary	Follicle-Stimulating Hormone (FSH)	APG	Ovaries, testes	Growth of ovarian follicle, production of sperm
Gland	Luteinising Hormone (LH)	APG	Ovaries, testes	Ovulation and corpus luteum, secretion of testosterone
	Growth Hormone (GH)	APG	All body cells	Growth, increase rate of protein synthesis
	Thyroid-Stimulating Hormone (TSH)	APG	Thyroid gland	Secretion of hormones from thyroid
	Adrenocorticotrophic Hormone (ACTH)	APG	Adrenal cortex	Secretion of hormones from adrenal cortex
	Prolactin	APG	Mammary glands	Milk production
Posterior Pituitary Gland	Oxytocin	Hypothalamus	Uterus and mammary glands	Contraction of uterus during childbirth, release of milk
	Anti-diuretic Hormone (ADH)	Hypothalamus	Kidney tubules	Increase permeability of DCT and collecting duct to reabsorb water
Thyroid	Thyroxine (T3 and T4)	Most cells	Most cells	Increase metabolism and therefore oxygen consumption and heat production
Para- thyroids	Parathormone (PTH)	Parathyroid	Bones, kidney, blood, intestines	Increase Calcium levels
	Calcitonin	Parathyroid	"	Decrease Calcium levels
Adrenal Glands	Aldosterone	Adrenal Cortex	Kidney	Increase reabsorption of sodium ions and decrease reabsorption of potassium ions
	Cortisol	Adrenal Cortex	Most cells	Promotes normal metabolism, withstand stress, replace damaged tissue
	Adrenaline (epinephrine)	Adrenal medulla	Most cells	Reinforces the effect of sympathetic nervous system (fight or flight)
	Noradrenaline (norepinephrine)	Adrenal medulla	Most cells	"
Pancreas	Glucagon	Alpha cells	Most cells	Decrease glucose absorption therefore increasing BGL
	Insulin	Beta cells	Most cells	Increase glucose absorption therefore decreasing BGL

hormones can be lipid-soluble and able to cross cell membranes to bind with and activate intracellular receptors or, water-soluble and able to bind with and activate receptors on cell membranes, and require secondary messengers to affect cell functioning

Types of hormones

- Hormones do not start reactions, but they regulate reactions
- Hormones are required in minute quantities
- Hormones from animals can be transferred
- Hormones cannot be stored, they have an expiry date in our body the liver catabolises them
- May be proteins, steroids or amines
- Proteins and amines attach to a receptor molecule on the membrane of the target cell
 - Causes a secondary messenger substance to diffuse through the cell and activate particular enzymes
- Steroid hormones work by entering target cells and combining with a receptor inside the cell
 - Activates the genes controlling the production of particular proteins

Enzyme Amplification

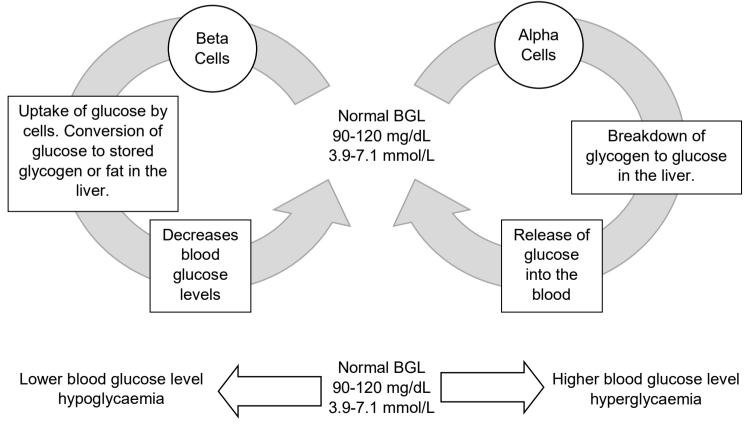

- One hormone molecule can manufacture or activate thousands of enzyme molecules
- Hormone triggers a cascading effect called enzyme amplification
- A very small stimulus can cause a very large effect

Synthesising Human Proteins

synthetic hormones may be developed to control or treat endocrine dysfunction, including diabetes mellitus, hypothyroidism and hyperthyroidism, to improve the quality of life for individuals

hormones and vaccines are developed using recombinant DNA and associated biotechnological techniques

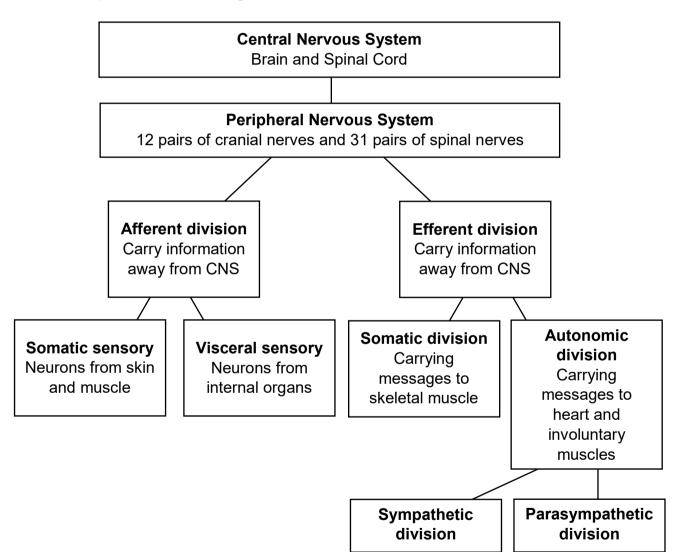
- Done using recombinant DNA technology
- Synthesis of human insulin using recombinant DNA technology:


	Type 1 Diabetes	Type 2 Diabetes
Cause	 Deficiency of insulin Lack of insulin production (beta cells destroyed in autoimmune reaction) 	 Insulin receptors are resistant to the hormone – cell becomes impermeable to glucose Cells can't uptake glucose
Symptoms	 Severe Hyperglycaemia Glucose in urine Increased urine production Excessive thirst and hunger Weight loss Ketosis 	 Increased appetite (overeating may contribute to existing obesity problem) Urine production increases Glucose in urine Muscle weakness, fatigue Frequent infections, poor wound healing

Treatment	Present:		Regularly check blood glucose level
Treatment		•	e ,
	Regular insulin injections	٠	Manage diet to reduce fluctuations in
	BGL monitoring		blood glucose level
	New:	•	Reduce weight (exercise, diet)
	• Cell therapy (transplant of beta cells)	•	Reduce blood pressure
	Future:	•	Take anti-diabetic drugs
	Gene therapy (gene for insulin	•	Insulin therapy
	inserted into diabetic's cell)		

	Hyperthyroidism	Hypothyroidism
Cause	Too much thyroxine	Too little thyroxine
Symptoms	Weight loss	Slow metabolism
	Appetite change	Weight gain
	Muscle weakness	Swelling
	 Grave's disease (the eye thing) 	 Enlarged thyroid gland (goiter)
Treatment	Radioactive iodine	• Synthetic thyroxine (levothyroxine)
		Increased iodine intake

Control of Blood Glucose Levels


- Glucagon and Insulin mediate the regulation of blood glucose levels
- Negative feedback loops
- Glucagon increase blood glucose levels, synthesis of glucose from amino acids
- Insulin decrease blood glucose levels, synthesis of glycogen and cellular uptake of glucose
- When food is unavailable for long periods of time

Nervous System

structure and function of the divisions of the nervous system can be observed and compared at different levels in detecting and responding to the changes in the internal and external environments including: central-peripheral

- afferent-efferent
- autonomic-somatic
- sympathetic-parasympathetic
- Communication network and control centre of the body
- Maintains homeostasis
- Two main parts
 - o Central Nervous System (CNS) consists of brain and spinal cord
 - Peripheral Nervous System (PNS) is the nerves that connect the CNS with the receptors, muscles and glands

Neurons

Term	Definition
Neuron	Single nerve cell
Nerve-fibre	Extension of the cell, usually an axon
Synapse	Junction between the branches of two neurons. Is a gap, the signal is
	carried across the gap by a neurotransmitter
Neuromuscular junction	Axon terminal joins a muscular fibre

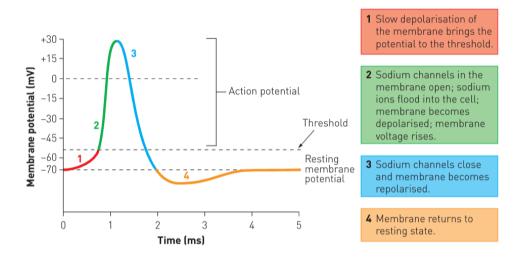
Types of Neurons

Type of Neuron	Diagram	Purpose
Multipolar Motor neuron, efferent neuron	ANNE SE	 Takes impulses away from the CNS EFFerent for f off
Bipolar Sensory neuron, afferent neuron		 Takes impulses into the CNS
Unipolar Sensory neuron, afferent neuron	We want	 Takes impulses into the CNS

Transmission of Impulses

transmission of nerve impulses is via electro-chemical changes that occur at the generation of the impulse, the propagation of the impulse along the nerve fibre, and the transfer of the impulse across the synapse

Transmission of Nerve Impulses Across an Unmyelinated Neuron


Resting Potential

- Normal state, not stimulated
- Inside of membrane is negative compared to outside which is positive
- Difference is called resting potential
- Resting potential is -70mV
- Difference in concentration of ions (K⁺, Na⁺, Cl⁻) maintained by the active transport of ions using carrier-mediated transport (pumps)
- Sodium-potassium ion pump
- These pumps move 3Na⁺ out of the cell for every 2K⁺ ions into the cell
- Requires ATP

Action Potential

- When the membrane receives stimulation, the negative charge inside the membrane becomes positively charged
- As a result of action potential, the membrane is depolarised
- In order for the neuron to be stimulated, it has to be above the threshold -55mV
- Caused by an influx of Na⁺
- ALL or NOTHING response it either happens or it doesn't
- Na⁺ gates open rapidly, influx of Na⁺ by diffusion
- Depolarises the membrane
- K+ gates take longer to open but eventually do

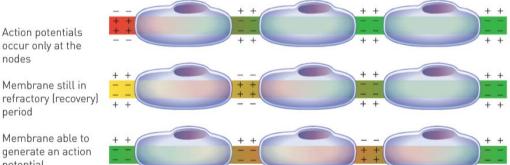
- At about 30mV the Na⁺ entering are equal to K⁺ leaving, no net movement with Na⁺ gates shut • and the K⁺ gates open the membrane begins repolarising
- Does overshoot called hyperpolarisation

Refractory Period

- After an action potential, K⁺ ions quickly restore to resting potential
- Na⁺ diffusion into the cell is prevented in that region
- During the 1ms afterward no action potentials can be generated
- Therefore an action potential can only travel in one direction

occurring

Membrane still in refractory period


Membrane able to generate an action potential

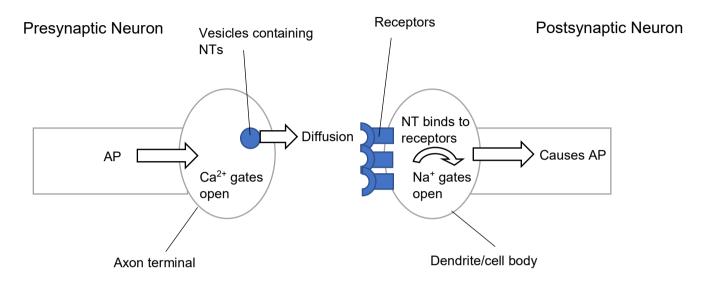
Transmission of Nerve Impulses Across a Myelinated Neuron

+

- Called saltatory conduction
- Action potential moves from one node of ranvier to the next
- Moves 140m/s

+ +

refractory (recovery) period


nodes

Membrane able to generate an action potential

Transmission across a synapse

- In a synapse there is no membrane
- Neurotransmitters diffuse across gap and attach to receptors
- Over 100 neurotransmitters (NTs)
 - o Acetylcholine
 - o Adrenaline and Noradrenaline
 - o Dopamine
- Only occurs from axon terminals to dendrite/cell body

Excitatory	Inhibitory
 Increase stimulation of transmission at synapse Acetylcholine (Ach) Adrenaline Noradrenaline Nerve agents (organophosphate) stops enzyme (denatures the enzyme) from breaking down Ach Causes constant muscle contraction i.e. seizures, difficulty breathing, loss of control, urination and defaecation, spasms and pain, death 	 Increase depression of transmission at synapse Snake venom Spider venom Snake venom inhibits Ach from binding to receptors, muscle contraction does not occur Causes paralysis

Divisions of the Nervous System

Peripheral Nervous System (PNS)

- Consists of nerve fibres which carry information to and from the CNS
- Consists of groups of nerve cell bodies called ganglia
- Nerve fibres are arranged into nerves which arise from brain and spinal cord
- 12 pairs of cranial nerves (brain)
 - o Optic nerve, auditory nerve
 - Usually missed nerves being able to carry information to the brain (sensory fibres) and those that carry impulses away from the brain (motor fibres)
 - $\circ~$ A few cranial nerves carry only sensory or motor impulses
- 31 pairs of spinal nerves (spinal cord)

Spinal nerves

- 8 pairs of cervical spinal nerves
- 12 pairs thoracic spinal nerves
- 5 pairs of lumbar spinal nerves
- 1 pair of coccyx spinal nerve

Afferent division of the PNS

- Carries impulses from sensory receptors to the CNS (away from CNS)
- Afferent nerve cell can be: somatic sensory and visceral sensory
 - o Somatic: receptors in skin, around muscles and joints
 - Visceral: receptors in internal organs

Efferent division of the PNS

- Carries impulses away from the CNS
- Somatic division takes impulses from the CNS to skeletal muscles
- Autonomic division divided into sympathetic and parasympathetic divisions

Autonomic Division

- ANS responsible for our internal environment by controlling homeostatic mechanisms without conscious control
 - $\circ\;$ Heart rate, blood pressure, temperature, digestion, pupil size, airflow, defaecation and urination
- Carries messages away from the CNS
- Two types of neurons
 - First cell body in grey matter of CNS
 - Second has cell body in ganglion
- Is divided into Sympathetic and Parasympathetic divisions
- Parasympathetic: Tends to control homeostatic mechanisms
 - Rest and digest
- Sympathetic: Takes control during strenuous physical activity
 - \circ Fight or flight stimulated by fear, anger, competition or stress
 - Rate and force of heart beat and blood pressure, dilate blood vessels, non-essential organ blood flow restricted, dilated airways and increase depth of breathing, blood glucose level increase, sweat secretion increase, Adrenal Medullae release adrenaline and noradrenaline

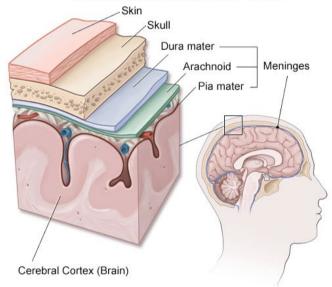
Receptors

different receptors detect changes in the internal and external environments, including thermoreceptors, osmoreceptors, chemoreceptors and receptors for touch and pain

Type of Receptor	Stimulus	Location
Thermoreceptor	Temperature	Skin, hypothalamus
Nocireceptors/	Intense stretch or strain, damage or	Skin
mechanoreceptors	threat of damage	
Baronoceptors	Pressure in blood vessels	Aortic and carotid bodies
Osmoreceptors	Osmolarity: concentration of	Hypothalamus
	substances dissolved in the water of blood plasma	
Proprioceptors	Sense of position	Inner ear, muscles, tendons, joints
Stretch receptors	Relative position	Muscles
Chemoreceptors	Presence of chemicals	Aortic and carotid bodies
Pain receptors	Pain, damage or threat of damage	Skin
Hair root plexus	Movement of hair	Hair follicles (skin)

Central Nervous System

the parts of the central nervous system, including the brain (cerebrum, cerebellum, medulla oblongata, hypothalamus, corpus callosum) and spinal cord, have specific roles in the co-ordination of body functions and are protected by the meninges and cerebro-spinal fluid


- Consists of the brain and spinal cord
- Control centre of the nervous system

Protection of the CNS

- 1. Bone
- Cranium protects the brain
- Spinal cord protected by vertebrae
 - Runs through vertebral canal

2. Meninges

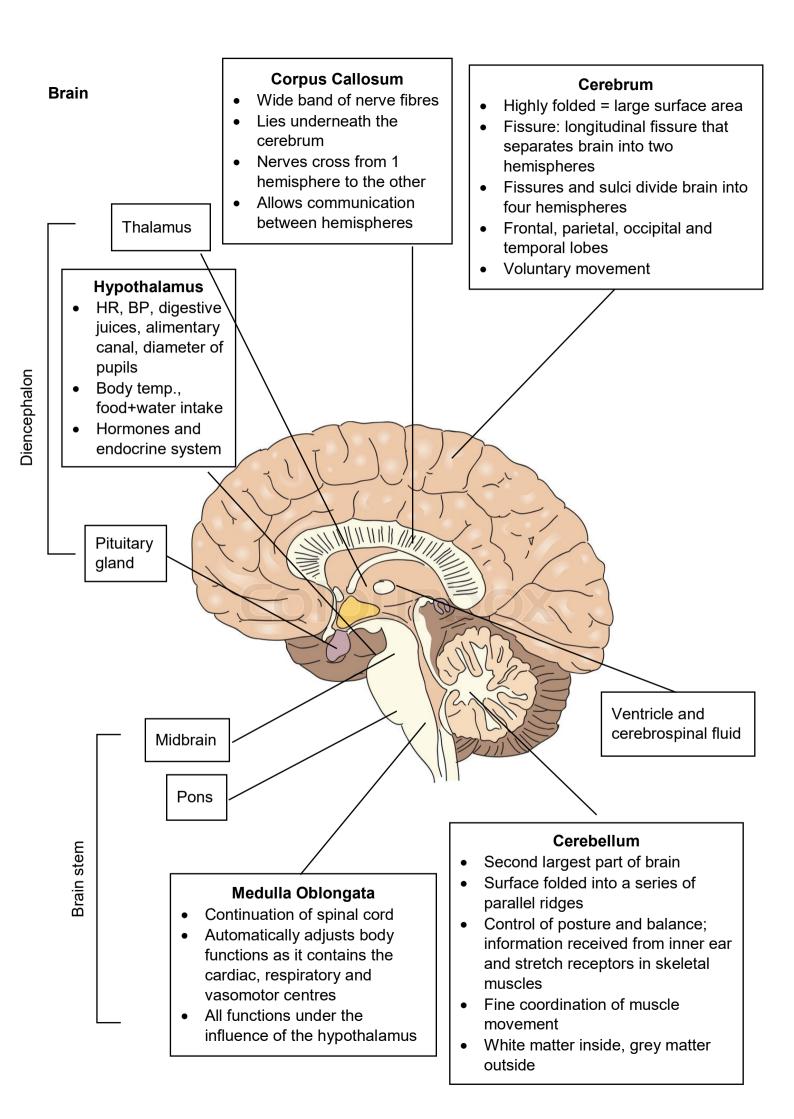
• Three layers of connective tissue forming membranes that cover the surface of the brain and spinal cord

Meninges (Coverings of the Brain)

Pia Mater Inner layer Delicate, has blood vessels

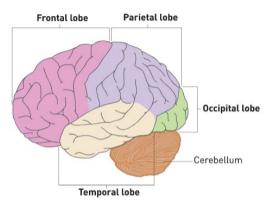
Arachnoid Middle layer Loose mesh of fibres **Dura Mater** Outer layer Tough and fibrous

3. Cerebrospinal Fluid

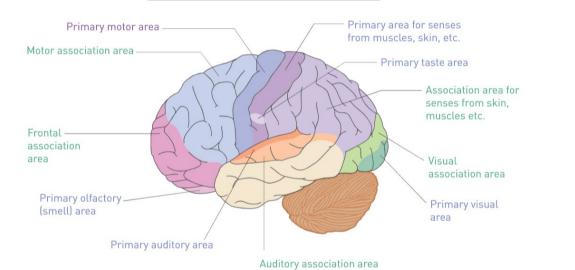

- Clear, watery fluid that occupies space between middle and inner meninges, cavities in the brain and centre of spinal cord
- Contains water, cells, glucose, urea and salts

PST

Protection: shock absorber to cushion blows/shocks


Support: Brain suspended in cranium and floats in fluid

Transport: Takes nutrients to and wastes away from the cells of the brain and spinal cord


Cerebrum

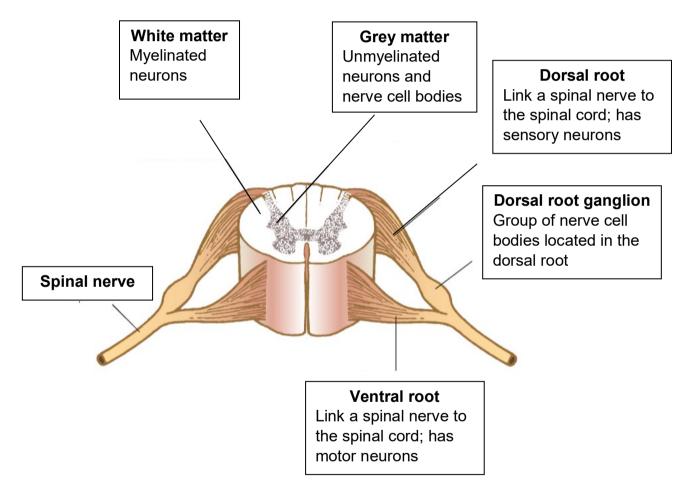
- Rounded ridges convolutions (gyri) separated by either shallow downfolds (sulci) or deep down folds (fissures)
- Four lobes

• 3 different areas: sensory, motor, association

Sensory areas Receive and process nerve impulses from the senses Motor areas Send impulses to muscles, especially voluntary Association areas Interpret information from sense and make it useful

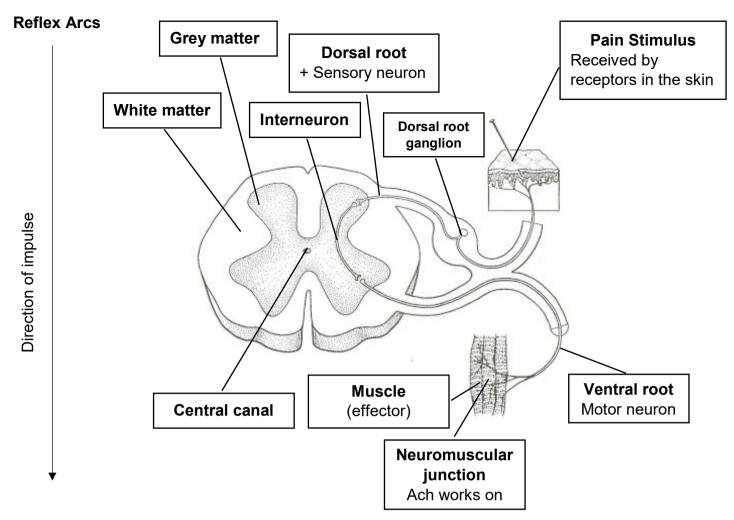
Control of Movement

Cerebrum	Cerebellum
 Intention to contract muscles begins in the motor association area Plans the behaviour and makes up the sequence and intensity of the muscle contractions required Program sent to the primary motor area Nerve impulses sent to muscles Upper motor neurons carry impulses to appropriate level of spinal cord (neurons cross over) Lower motor neuron carry impulses to the muscles 	 Achieves smooth and coordinated movement and maintains pressure and muscle tone during movement by integrating movement from: Cerebrum: position of body Semi-circular canals (inner ear): movements of the head Saccule and utricle (inner ear): position of the head Eyes: observe body's position in space Pressure receptors in skin: relative amount of pressure on parts of body Stretch receptors in muscles and joints: body movement and joint position


Explain how the cerebrum and cerebellum initiate and control movement of skeletal muscle. (4 marks)

- Cerebrum initiates movement through the motor association area which initiates the primary motor area. The primary motor area sends an action potential via upper motor neurons to the spinal cord. This action potential affects the lower motor neuron and the action potential reaches the neuromuscular junction and muscle contraction occurs
- Cerebellum controls fine coordination of muscle movement through information received from sensory receptors of the ear and stretch receptors in skeletal muscle

Reflex Arcs


the reflex arc comprises of specially structured neurons, including sensory, interneuron and motor neurons, to transmit information from the receptor to the effector to respond rapidly to stimuli

Spinal Cord

Functional properties of reflex arcs

- Involuntary no thought needed for the reflex to occur
- Stereotypical the arc happens the same way every time
- Rapid the stimulus is changed as soon as possible

Autonomic division

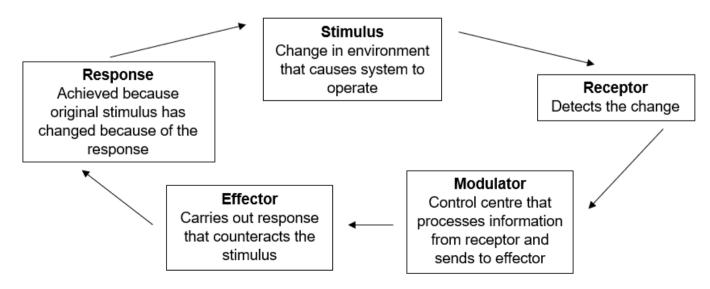
Structure	Sympathetic	Parasympathetic
	Fight of flight	Rest and digest
Heart	Increase cardiac output	Decrease cardiac output
	CO = Stroke volume x heart rate	
Eyes	Dilates pupils	Constricts pupils
Lungs	Dilates bronchioles	Constricts bronchioles
_	Increase breathing rate	Decrease breathing rate
Bladder and	Contracts sphincters	Relaxes sphincters
anus		
Saliva	Decreases saliva	Increases saliva
production		
Liver and gall	Increase breakdown of glycogen \rightarrow	Increase conversion of glucose \rightarrow
bladder	glucose (glycogenolysis)	glycogen (glycogenesis)
	Inhibits gall bladder	Stimulates gall bladder
Stomach and	Inhibited movement	Stimulates movement
intestines		
Adrenal	Stimulates hormone secretion	No obvious effect
Medulla	Adrenaline and Noradrenaline	
Sweat glands	Increase sweat production	No obvious effect
Skin	Vasoconstriction	Little effect
Skeletal	Vasodilation of blood vessels	No effect
muscles		
Internal organs	Vasoconstriction of all except heart	Little effect
	and lungs	

Nervous vs. Endocrine

the nervous and endocrine systems work together to co-ordinate functions of all body systems, but differ in terms of:

- speed of action
- duration of action
- nature and transmission of the message
- specificity of message

Structure	Nervous System	Endocrine System
Speed of Action	Rapid – within milliseconds	Slower – can take seconds to days
		for action
Duration of	Brief – usually short lived	Longer lasting – usually continues
Action		after stimulus has stopped
Nature	Electrochemical – Electrical impulse (sodium-potassium pump) and	Chemical messengers - hormones
	neurotransmitters	
Transmission	Along the membrane of neurons	Blood stream
Specificity	Localised specificity – very specific	Wide spread specificity – can affect
		many cells, general

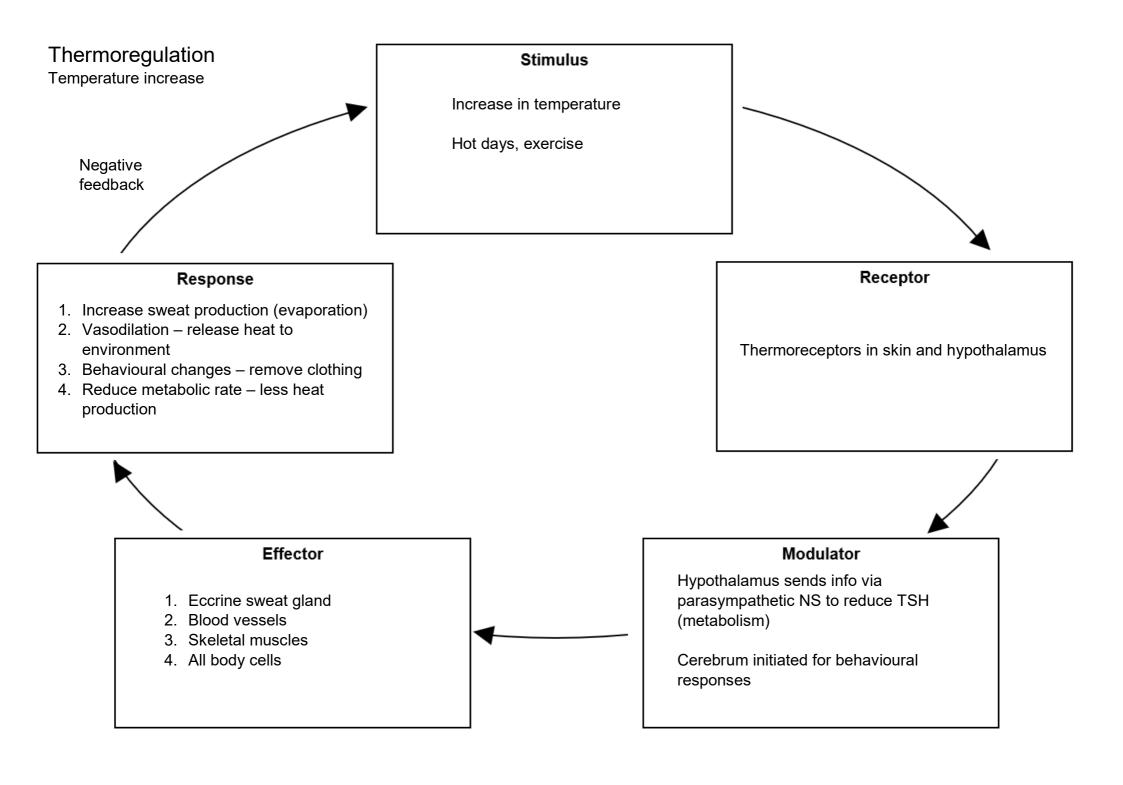

Homeostasis

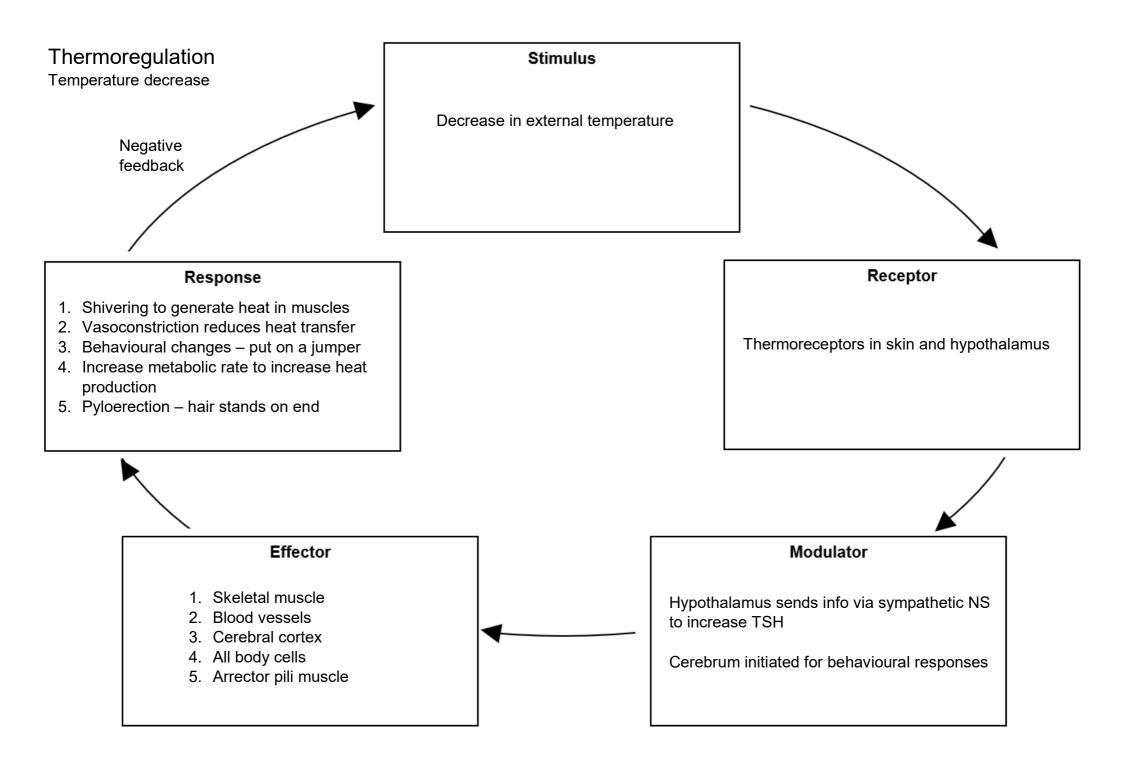
homeostatic processes involve nerves and hormones in maintaining the body's internal environment within tolerance limits through the control of metabolism and physiological and behavioural activities

Homeostasis: the maintenance of a constant internal environment where cells can carry out their specific functions as efficiently as possible.

Feedback Systems

- Body responds to stimulus → response alters original body stimulus
- Two types of feedback loops
 - Positive: The response reinforces the stimulus
 - e.g. Oxytocin
- Negative: The response counteracts the stimulus
- e.g. Anti-diuretic hormone


Thermoregulation


Thermoregulation occurs by the control of heat exchange and metabolic activity through physiological and behavioural mechanisms

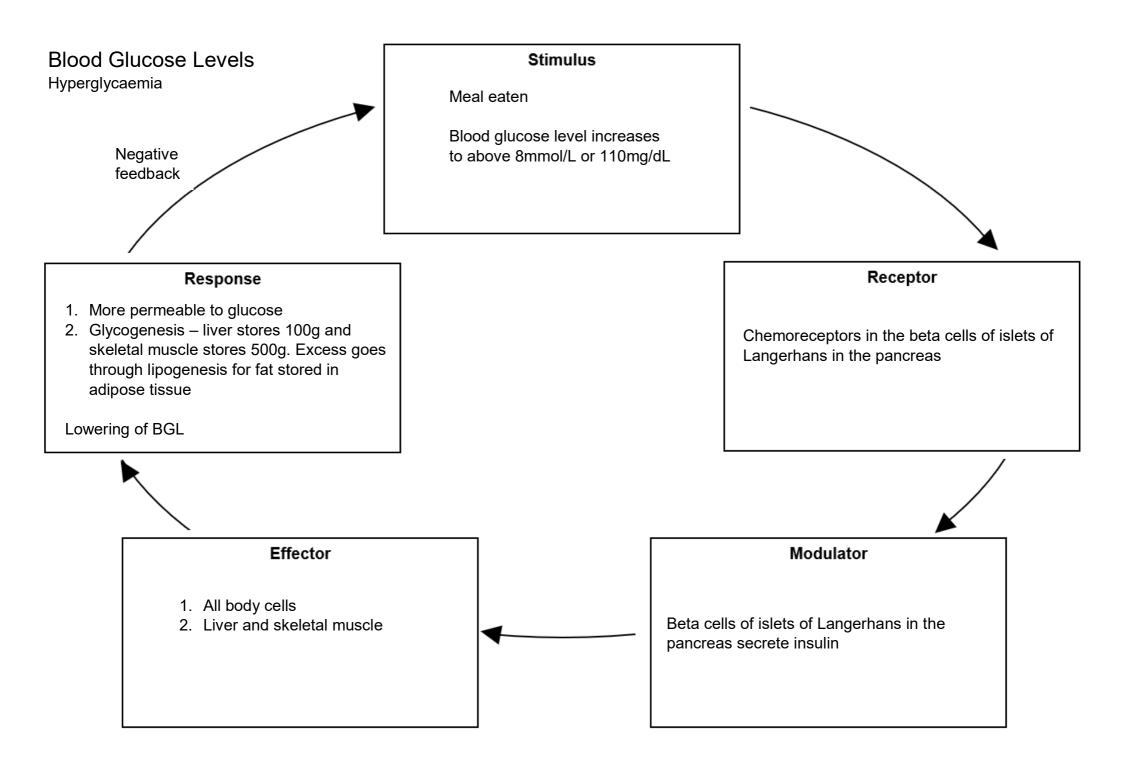
Rise in body temperature		Fall in body temperature	
Increase heat loss	Decrease heat	Decrease heat loss	Increase heat
	production		production
Vasodilation	Activity	Vasoconstriction	Shivering
Body increases blood	Decrease in voluntary	Body decreases blood	Hypothalamus
flow to the skin, allows	activity, meaning	flow to the skin, which	stimulates part of the
heat loss via radiation,	there is a decrease in	decreases the transfer	brain that increases
prompts cooling of the	cellular respiration	of heat from internal	skeletal muscle tone.
blood that is flowing	(heat is a product)	body organs to the	This increases body
through the skin		skin, allowing less	heat production
Our office of	Metabolic rate	heat to be lost from	A . 41. 14 .
Sweating Sweat secreted from	A reduction in the	the body surface	Activity
	secretion of thyroxine decreases the	Sweating	Increase in voluntary activity, meaning
sweat glands to skin, contains salt, urea,	metabolic rate,	Reduction in sweating	there is an increase in
lactic acid, K ⁺ ions	meaning there is a	Reduction in Sweating	cellular respiration
and water. Cools by	decrease in cellular	Behavioural response	(heat is a product)
evaporation,	respiration (heat is a	Putting on more	
environmental	product)	clothes, using a	Metabolic rate
temperature has to be		heating device	An increase in the
greater than body			secretion of thyroxine
temperature to be		Surface area	increases the
effective.		Reduction of surface	metabolic rate,
		area by curling into a	meaning there is an
Behavioural response		ball or huddling	increase in cellular
Decreasing activity,			respiration (heat is a
air conditioning,		Pyloerection	product)
removing clothing		Goosebumps – hairs	
Surface area		stand on end to keep	
Surface area Increase surface area		heat in	
by spreading out			

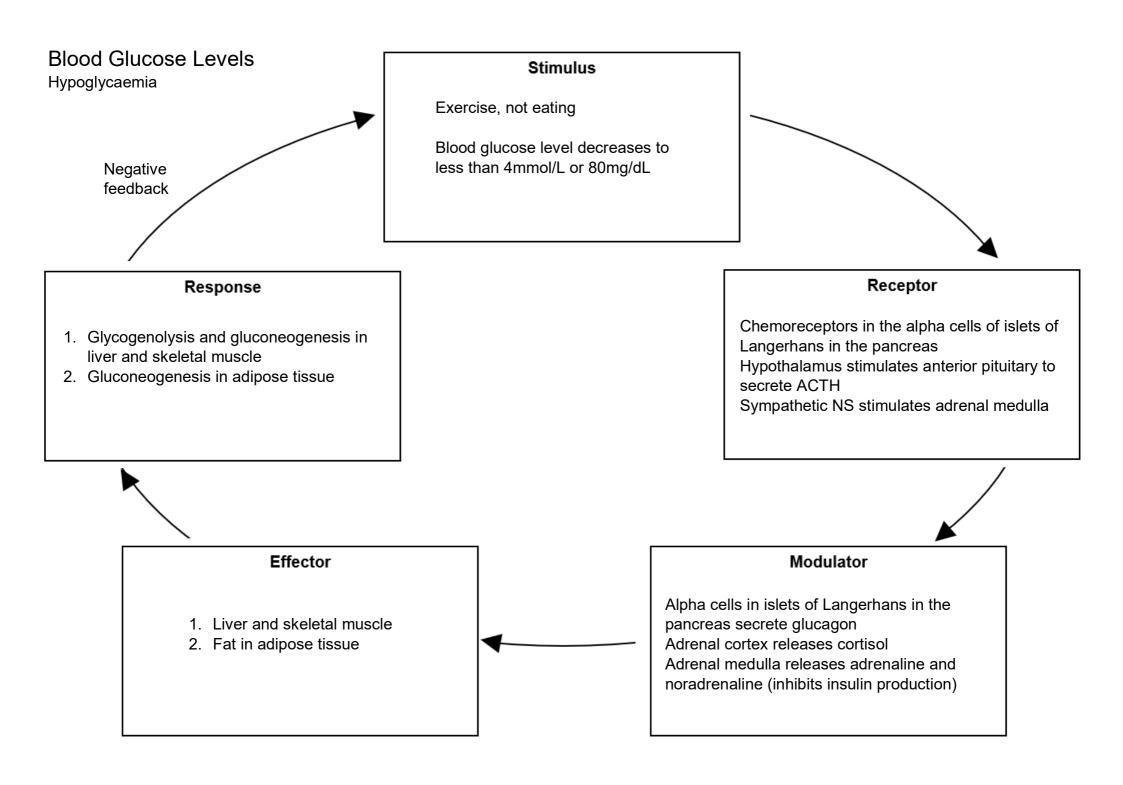
Heat Transfer

Conduction	Convection	
Contact between the skin and another surface	Heat through the air, e.g. wind	
Evaporation	Radiation	
We all know what evap is but can't define it	Like from a fire	

Blood Sugar Levels

blood sugar levels are maintained by controlling of sugar uptake, its storage and release by cells and use in metabolism; these processes involve the hormones of the pancreas and adrenal glands


- Glucose energy source of cell correct amounts must be maintained to supply these cells
- BGL is maintained by storing unused glucose as glycogen
- BGL (blood glucose level) is coordinated by the liver, pancreas and adrenal glands
- Liver is able to store 100g of glycogen
- Skeletal muscle is able to store 500g of glycogen
- Blood travels to the liver from the intestines
 - $\circ~$ Glucose used by the liver
 - o Stored as glycogen
 - Continues to circulate
 - Converted to fat for long term storage


Glycogenesis: Synthesis of glycogen from glucose

Gluconeogenesis: Producing glucose from fats and amino acids

Lipogenesis: Conversion of glucose to fatty acids for long term storage

Glycogenolysis: Process of converting glycogen back to glucose

Osmoregulation

body fluid concentrations are maintained by balancing water and salts via the skin, digestive system and the kidneys, which involve the actions of antidiuretic hormone (ADH) and aldosterone on the nephron, and the thirst reflex

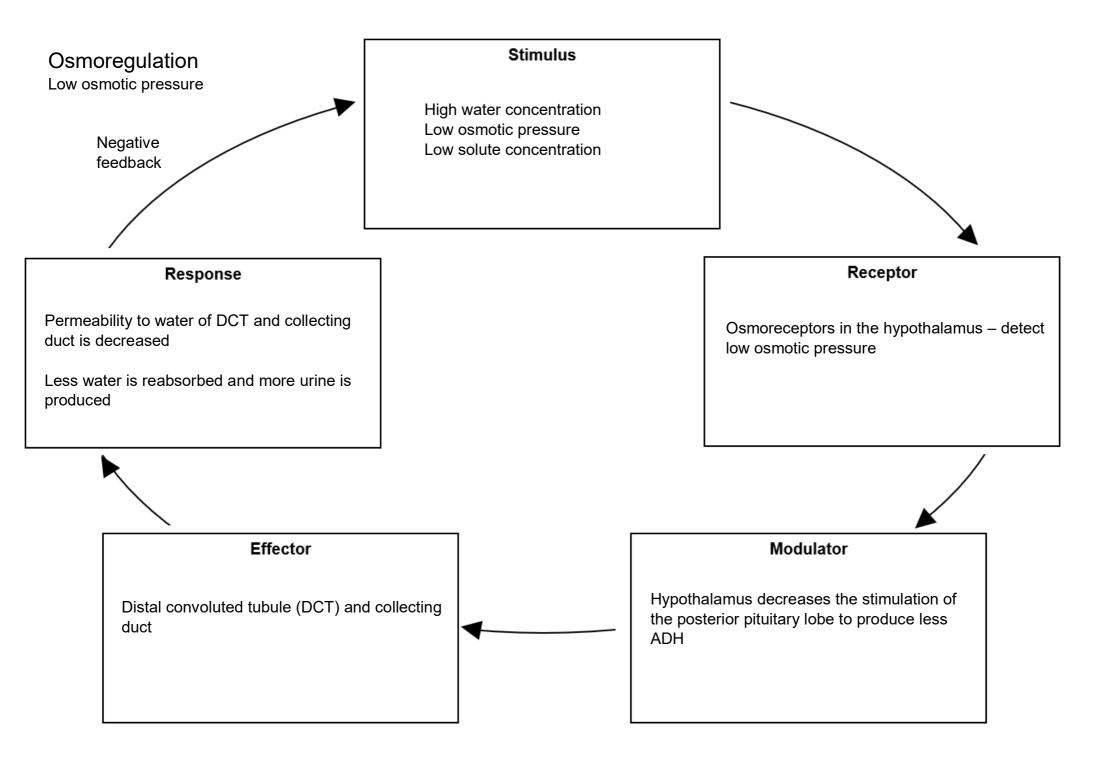
- Body approx. 60% water
- Types of fluid:
 - o Intracellular: fluid inside cells
 - o Blood plasma
 - o Intercellular/extracellular/interstitial: fluid outside cells
 - Water must be kept fairly constant and is obtained by drinking, eating and respiring
- 2.5L of water lost daily
 - o lost through skin, lungs, kidneys and intestines

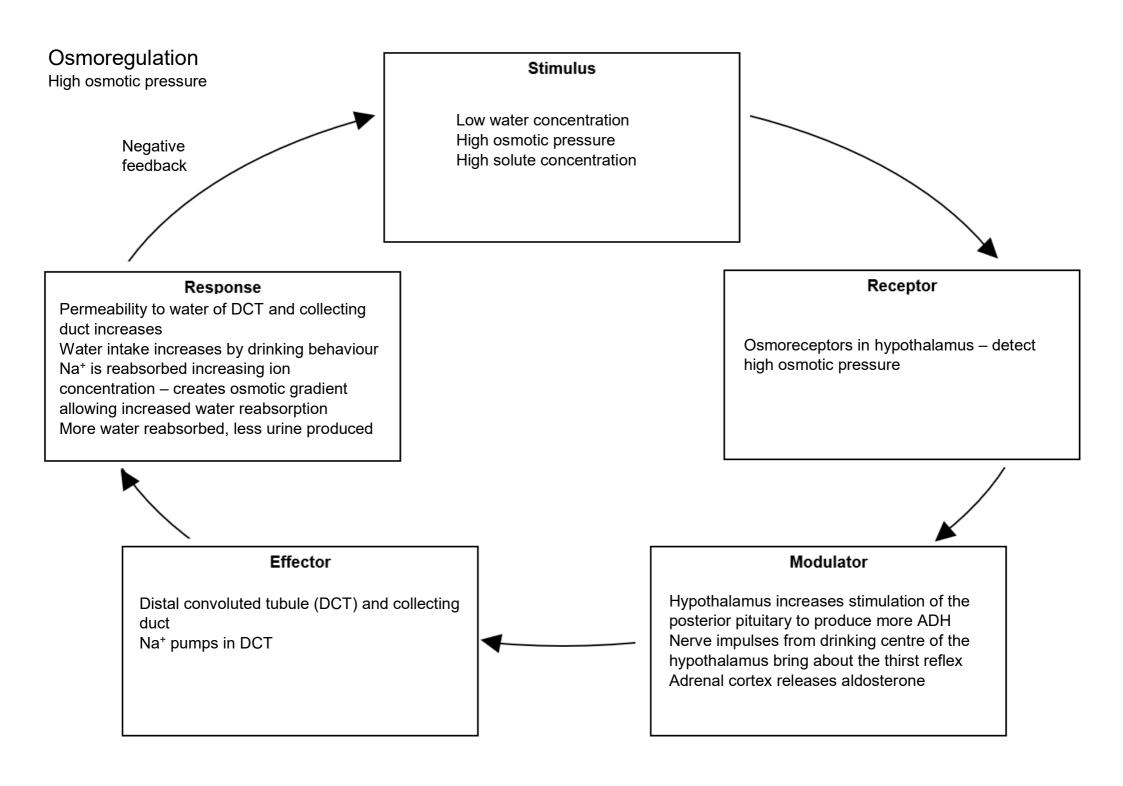
Kidneys

.

- 60% of water is excreted by the kidneys as it is the only water loss that can be regulated by the body
- Each kidney has approx. 1.2 million nephrons

Control of water loss


- Level of reabsorption of water is controlled by Anti-Diuretic Hormone (ADH)
 - Causes distal convoluted tubule (DCT) and collecting duct to reabsorb more water
 - Secreted by posterior pituitary
- When we are short of water, osmotic pressure rises
 - o Water from interstitial fluid diffuses into plasma
 - Water from intracellular fluid diffuses across membranes into intracellular fluid
 - o Cell shrinks


Dehydration

- Too little water
- Can be caused by sweating, vomiting, diarrhea
- Leads to headaches, dizziness, thirst, deliriousness and death

Intoxication

- Too much water
- Can be cause by drinking too much water
- Leads to headaches, vomiting, light-headedness, collapse, and rare: death

Gas Concentrations

gas concentrations are controlled by balancing the intake of oxygen and the removal of carbon dioxide via the lungs, through the actions of the medulla oblongata and the autonomic nervous system

- All cells need a constant supply of oxygen
- Carbon dioxide must be removed from the blood stream
- Diaphragm and intercostal muscles carry out breathing
 - o Stimulated by phrenic and intercostal nerves controlled by medulla oblongata

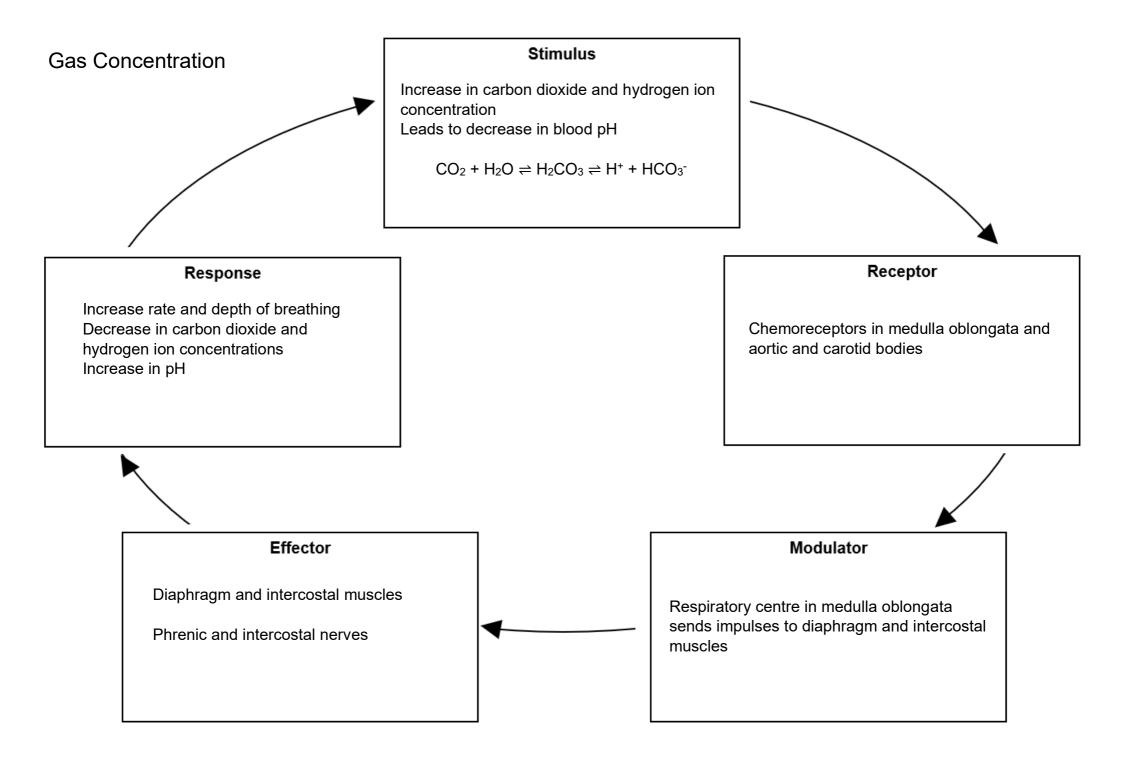
Oxygen concentration

- O₂ does not affect rate of breathing unless it as at dangerously low levels
- Chemoreceptors in aortic and carotid bodies detect O₂ concentration in the blood
- Chemoreceptors also in medulla oblongata

Carbon dioxide concentration

- CO₂ the major stimulatory factor for breathing
- Chemoreceptors respond to increase in H⁺ ions and CO₂ concentrations

 $\mathsf{CO}_2 + \mathsf{H}_2\mathsf{O} \rightleftharpoons \mathsf{H}_2\mathsf{CO}_3 \rightleftharpoons \mathsf{H}^+ + \mathsf{HCO}_3^-$


• More H⁺ ions – lower blood pH

Voluntary control of breathing

- Needed for speech, music, swimming, etc.
- Build up of CO₂ forces us to take a breath

Hyperventilation

- Rapid deep breathing that provides more oxygen and less carbon dioxide than what is necessary for the body
- Hyperventilation before swimming means that the swimmer may lose consciousness due to the lack of oxygen before needing to take a breath due to carbon dioxide build up
 - Can lead to drowning

Response to Infection

Infectious diseases caused by invasion of pathogens in the form of viruses and bacteria can be transmitted from one host to another

Pathogen: A disease-causing organism; often referred to as a pathogenic organism

Types of Pathogens Bacteria

- Mostly non-pathogenic
- Lots on our skin and in our body
- Uni-cellular shape

Rod-shaped Bacillus

Spherical **Cocci**

Spiral **Spirillum**

Transmission

- Contact
- Body fluids
- Droplets
- Ingestion
- Airborne

Examples

- Chlamydia
- Cholera
- Diphtheria

Viruses

- When a virus infects a living cell its DNA or RNA induces the cell to manufacture more virus particles
- Some viruses multiply in bacterial cells these are called bacteriophages
- Virus infected cells secrete cytokines called interferons, which introduce resistance to viral infection in the surrounding cells

Transmission

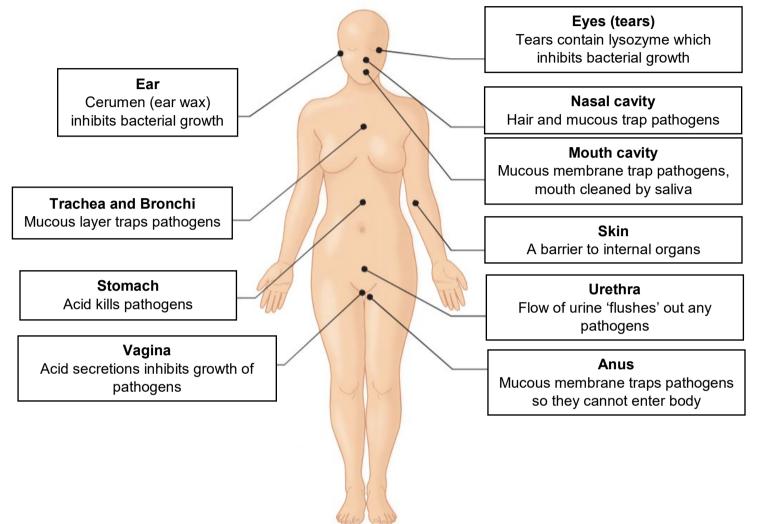
- Contact
- Body fluids

Examples

- HIV/AIDS
- Influenza
- Measles

Transmission of Pathogens

Transmission of pathogens occurs by various mechanisms, including through:


- Direct and indirect contact
- Transfer of body fluids
- Disease-specific vectors
- Contaminated food and water

Contact	 Spread of pathogen by physical contact 		
	 May be direct: actually touching an infected person 		
	 May be indirect: touching an object that has been touched by an 		
	infected individual		
	Skin infections and STIs		
Body fluids	Transfer of body fluids from one person to another		
	Blood or other body fluids from an infected person comes into contact		
	with the mucous membranes of an uninfected person, then pathogens		
	may enter the body of that person		
	HIV, Hep B and C		
Vectors	 Transfer of pathogens by other animals (insects, ticks, mites) 		
	 Some vectors transfer the pathogen directly 		
	 Many vector-borne diseases are spread by a specific vector 		
	 Malaria, dengue fever, lyme disease, bubonic plague 		
Contaminated food	 Contamination of food and water during food preparation, or through 		
and water	vectors that spread the pathogen to food or water		
	Cholera, Hep A, Typhoid		

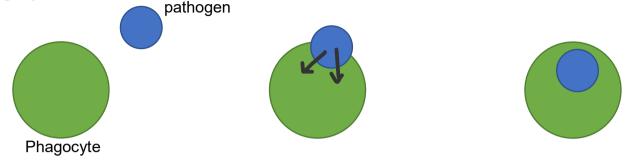
First Line of Defence

The body's external defence mechanisms against pathogens include features of the:

- Škin
- Digestive tract
- Urogenital tract
- Respiratory system
- The ear
- The eye

- External
- Non-specific

Protective reflexes


Sneezing	Stimulus: irritation of the nasal cavity Response: Forceful expulsion of air from lungs results in mucous and foreign particles to be expelled through nose and mouth
Coughing	Stimulus: Irritation of lower respiratory tract Response: Air is forced from the lungs to try and release or remove the irritant. Can release mucous and foreign particles out of the trachea and into the throat and mouth
Vomiting	Stimulus: As a result of bacterial toxins or due to overstretching (eat too much) Response: Involuntary forceful expulsion of stomach contents
Diarrhoea	Stimulus: Irritation of the walls of the small and large intestine Response: Faeces is more watery leading to faster expulsion of foreign bacteria/viruses from the anus

Second Line of Defence

pathogens that enter the body are targeted by non-specific immune responses of inflammation and fever

- Internal
- Non-specific

Phagocytosis

- 1. Phagocyte attracted to the foreign particle. Ingestion by the phagocyte/macrophage occurs
- 2. Vacuole forms inside the phagocytic cell. A lysosome binds to the vacuole and releases digestive enzymes
- 3. Enzymes break down the foreign particle leaving soluble debris
- 4. Vacuole leaves via exocytosis

Inflammation

- 1. Tissue is damaged. The skin becomes red, swollen, hot and painful
- 2. Mast cells stimulate production of histamine, heparin and phagocytes

Histamine: increase blood flow, causing capillaries to become more permeable. Increase metabolic heat (causing redness) with more fluid being filtered, the site swells

Heparin: prevents blood clotting. Allows phagocytes to be attracted to chemicals released by the mas cells. Blood clots form around injury, slowing down blood flow and pathogen movement Phagocytes: are attracted to chemicals released by the mast cells

- 3. Pain receptors are stimulated
- 4. The phagocytic cells fill with debris, forming pus

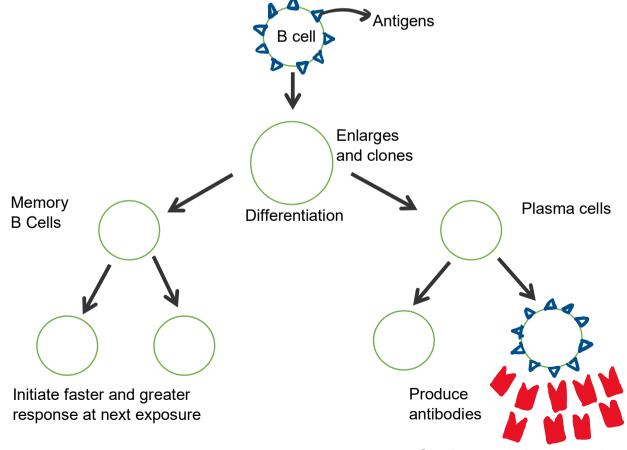
Fever

- Increase in body temperature to above 37.5°C usually 39°C
- As macrophages attack a pathogen, they secrete interleukins/pyrogens into the blood
- Pyrogens work directly on the hypothalamus, triggers an increase in body temperature
- Body feels cold and responds by shivering and vasoconstriction in skin
- Body temperature falls to normal
- Benefits of fever:
- A higher temperature is thought to prevent the growth of some bacteria and viruses
- Increases the effects of interferon (introduce resistance to viral infection in surrounding cells and prevent replication of virus particles in host cells)

Third Line of Defence

immunity is gained through the exposure to specific antigens by the production of antibodies by B lymphocytes and the provision of cell-mediated immunity by T lymphocytes; in both cases memory cells are produced

- Internal
- Specific


Antibody-mediated / Humoral response

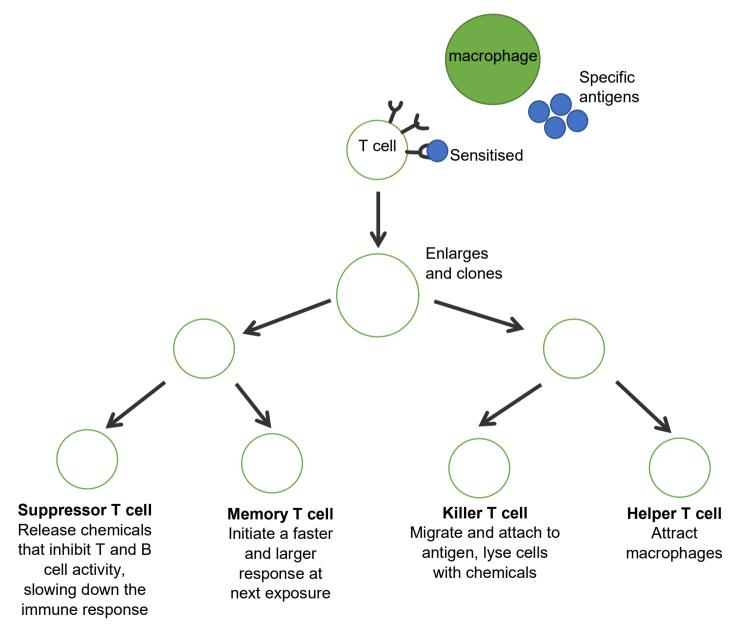
Antigen: any substance capable of causing formation of antibodies when introduced into the tissues

Self-antigen: any large molecule produced in a person's own body; does not cause an immune response in that person

Non-self-antigen: any compound foreign to the body that triggers an immune response Antibody: a substance produced in response to a specific antigen; combines with antigen to neutralise or destroy it

- B-lymphocytes/B-cells
- Gives resistance to intercellular/extracellular antigens
- Specific antigen engulfed by macrophages
- Antigens presented to specific B cells in lymphoid tissues
- Each B cell has a specific receptor protein that match a specific antigen (antigen-antibody complex)
- B cell is sensitised, enlarges, clones, divides and differentiates into:
 - o Memory cells for faster and larger response at next exposure to the pathogen
 - Plasma cells that make antibodies specific to the antigen and release into lymph to attack antigens
- Antibody action: inactivate, dissolve, lysis, clump (agglutinate), coat to attract macrophages

Coating, agglutination, lysis


Antibody action

Antibodies combine with the antigen to form an antigen-antibody complex

- Coating pathogen to attract phagocytes and digest easier
- Agglutination pathogens clump together to stop them spreading
- Lysing punch holes in bacterial cells so they burst/lyse
- Binding bind to pathogen surface, stops them entering or damaging cells
- Dissolving dissolve the pathogens

Cell-mediated response

- Attack pathogens that get inside cells (intracellular) where antibodies are unable to get to the pathogen, e.g. viruses
- T cell receptors are activated by antigen-presenting macrophages or B-cells
- Mobile, move around the body, mature in the Thymus
- Stimulate B cells and macrophages that lyse/kill cells e.g. cancer and transplant cells

Types of Immunity

passive immunity can be acquired as antibodies gained through the placenta, or antibody serum injections; active immunity can be acquired through natural exposure to the pathogen, or the use of vaccines

	Natural	Artificial
	No human intervention	Injection, etc. of antibodies
Active	Antigens enter the body naturally,	Immunisation/vaccinations. Antigens
Long lasting	microbes cause the person to catch	(weakened or dead microbes or
immunity	the disease. Stimulates the immune	subunits) are injected as vaccines.
	response but suffers symptoms. Body	Immunity without symptoms – body
	produces own lymphocytes and	produces antibodies and specialised
	antibodies	lymphocytes
Passive	Antibodies pass from mother to	Anti-venom. Pre-formed animal
Short lasting	foetus via placenta during pregnancy	antibodies are injected into the body
immunity	or via breast milk during breast	(treat snake bites, tetanus). The body
	feeding. A baby does not produce	does not produce antibodies
	antibodies of its own	

Treatment of Infection

antiviral and antibiotic drugs are used for treating infections and differ in their specificity to pathogens

the decision to participate in immunisation programs can be influenced by the social, economic and cultural context in which it is considered

Antibiotics

- Used for fighting the infection of bacteria
- Two types:
 - Bactericidal antibiotics: kill bacteria by changing the structure of the cell wall or cell membrane or disrupting the action of essential enzymes
 - Bacteriostatic antibiotics: stop bacteria from reproducing, usually by disrupting protein synthesis
- Broad spectrum: affect a wide range of bacterial infections
- Narrow spectrum: effective against only a couple of types of bacterial infections
- Multiple drug resistance: some strains of bacteria are resistant to most antibiotics, hastened by the overuse of antibiotics
- Total drug resistance: the resistance of some strains of bacteria to all antibiotics

Antivirals

- Antibiotics do not affect viruses
- Antivirals specific to viruses
- Inhibit the development of the virus

Vaccines

• 4 types of vaccines

Туре	Explanation	Examples	
Living attenuated	Micro-organisms of reduced virulence (disease-	Measles, mumps,	
micro-organisms	producing power)	rubella, TB	
Dead micro-	Micro-organisms that have been cultured and	Cholera, typhoid,	
organisms	killed	whooping cough,	
		influenza, Hep A	
Toxoids	Filtrates of bacterial cultures containing inactivated	Diphtheria, tetanus	
	toxins		
Sub-unit	A fragment of the organism is used to make the	HPV, Hep B	
	vaccine		

Risks of Vaccines

- Allergic to the culture medium, e.g. Influenza vaccine cultured in egg protein
- Inability to completely isolate a virus from another, risk of introducing cross species virus recombinant DNA prevents this
- Vaccines use preservatives such as Formaldehydes and acetone which some claim affect use of nervous system
- Ethical concerns over vaccines centre around its manufacture, testing and risks
- Other vaccines require human tissue to manufacture, this eliminates risk of cross species viruses being introduced
- Rubella vaccine is manufactured using cells of aborted foetuses which is an ethical concern for those who oppose abortion, they must weigh up health vs. stance on abortion
- Trial groups for vaccines may not be aware of the risks involved
- Vaccines usually tested on animals before human trials begin
- Some country's governments do not subsidise vaccines economical concerns for families